NSCL PAC 38 PROPOSAL ELEMENTS

Description of Experiment

I. Physics Justification

Introduction: The properties of extremely neutron-rich nuclei with N=7-8 reflect competition between the filling of the $1s_{1/2}$ and $0p_{1/2}$ orbitals which, for light neutron-rich systems, are close to each other in energy and inverted in comparison to nuclei closer to stability. We propose to study both ¹⁰He and ¹⁰Li following nucleon removal from ¹¹L, using HiRA. The properties of the ground states of ¹⁰He and ¹⁰Li depend on both the neutron single-particle energies and the nucleon-nucleon residual interaction in a region of large neutron excess where they are still poorly understood. The data from this experiment will inform theoretical calculations, especially "first-principles" approaches such as the Quantum Monte Carlo [1] and No-Core shell-model [2], at and beyond the limits of stability. The approach we propose here, direct single-nucleon pickup, is complementary to those used in earlier measurements of ¹⁰He and ¹⁰Li that have included two-nucleon stripping and one or multi-nucleon knockout. In addition to information about the structure of these unbound systems, the data can also be compared to those from nucleon knockout to provide information on the reaction mechanisms.

¹⁰He: The main goal of the experiment is to study the low-energy structure of ¹⁰He. This system, unbound with respect to decay to ⁸He+2*n*, is still rather poorly understood [3-5]. In a simple picture, the neutron configuration in ¹⁰He should be similar to that of the ground state of ¹¹Li. It has been known for some time that the ground state of ¹¹Li possesses both $(0p_{1/2})^2$ and $(1s_{1/2})^2$ amplitudes. Estimates of the s^2 magnitude vary widely, from about 25% to 50%. Both s^2 and p^2 configurations should thus be important in ¹⁰He, leading to two configuration-mixed 0⁺ states at low excitation energy. Neither a good candidate for an excited 0⁺ state nor values of the s^2/p^2 amplitudes in ¹⁰He exist from experiment. Theoretical estimates of *sd* to *p* ratios in ¹⁰He of between 2 and 3 to 1 have been suggested [3,4], but these depend not only on the $1s_{1/2}$ and 0p single-particle energies, but also on the *nn* residual interaction, neither of which are well constrained. For instance, the ground-state spin-parity assignment for ⁹He remains controversial. Neutron-transfer with the ⁸He(*d*,*p*)⁹He reaction [6-8] suggests that the parity inversion for N=7 observed in ¹¹Be persists in ⁹He, with a $1/2^+$ ground state. Studies of ⁹He following two-nucleon knockout from ¹¹Li have concluded, however, that this assignment is "doubtful," that the ground-state $J^{\pi}=1/2^-$, and that the n^- ⁸He *s*-wave interaction is "weak" [8].

A variety of results on ¹⁰He are summarized in Fig. 1, and in Table I. Experimentally, the first claimed observation of ¹⁰He is from Korsheninnikov in 1994 [9], from interactions of ¹¹Li+CD₂ (Fig. 1a). Due to the thick target used, ³He particles from the $(d, {}^{3}\text{He})$ reaction were not observed, and the resolution of the 8 He-2*n* relative energy-spectra, as gauged from data for the ⁷He ground state, was relatively poor. A number of other studies of ¹⁰He followed, using different reaction mechanisms. Measurements of the ${}^{8}\text{He}(t,p){}^{10}\text{He}$ reaction (Fig. 1c,d) [10,11] have attracted particular attention, and gave a higher ground-state energy than that of Ref. [9]. The most recent (t,p) data were interpreted as suggesting the presence of a 1⁻ excited state similar to a 1_1^- state in ¹²Be that has been suggested as further evidence of the reduction of the *p*-sd shell separation and a change in the neutron shell ordering in this region. Other analyses [3,12] disagree with that interpretation for ¹⁰He and claim no such state is necessary to explain the data, and the question remains open. Furthermore, there exists a general discrepancy between results from nucleon knockout reactions and those from transfer reactions. Ref. [4] examined the question of why (t,p) and proton removal different should give different results, suggesting sensitivity to the extended size of ¹¹Li, however very recent results from a study of ¹⁴Be-2p2nmulti-nucleon removal (Fig. 1b, Ref. [5]) which agreed with those from ¹¹Li-*p* knockout discounted that solution and according to the authors the question remains "unresolved."

We will also start from ¹¹Li, but instead of reconstructing the ¹⁰He energy from ⁸He+2*n* correlations, we will use the (d, ³He) reaction in inverse kinematics with a thin target and observe the ³He particles as was done in E10011. One possible explanation for the discrepancies between different results from different reactions is the possibility of two nearby overlapping 0⁺ states consisting of orthogonal combinations of $(1s_{1/2})^2_{0+}$ and $(0p_{1/2})^2_{0+}$ amplitudes. Depending on the reaction mechanism and configuration mixing, either one or both of these 0⁺ states might be populated in different prior measurements, thus changing the apparent "ground-state" energy and width. Only one of these, with the neutron configuration similar to that of the ground state of ¹¹Li, should be populated in (d, ³He). *One more summative thought here*.

¹⁰Li: Just as an understanding of ¹⁰He relies on knowledge of the single-particle properties of ⁹He, calculations for ¹¹Li rely on data for ¹⁰Li. Simultaneously with the (d,³He) measurement, we will collect data for the ¹¹Li(d,t)¹⁰Li reaction. The low-energy spectrum of ¹⁰Li is generally described as possessing a virtual *s*-wave neutron ground state, with a nearby *p*-wave excitation at E_X ~0.5 MeV. This picture has emerged from both neutron-knockout from ¹¹Li [16,17], as well as neutron stripping with (d,p) on ⁹Li [18]; Table 2 and Fig. 2 summarize some of the information available on ¹⁰Li. In fact, the prevailing description is too simple, as the neutron single-particle strengths must be split due to coupling with the angular momentum of the $0p_{3/2}$ proton. In ¹²B, the splitting between the *J*=1 and 2 members of the positive- and negativeparity doublets is approximately 1 MeV each, an amount comparable to the splitting of the effective $s_{1/2}$ and $p_{1/2}$ single-particle strength in ¹⁰Li expected based on extrapolations from ¹³C, ¹²B, and ¹¹Be. While this detail has been overlooked in the analysis of many (but not all, see Ref. [20]) data on ¹⁰Li, some clarification can be obtained from a study of the selective ¹¹Li(*d*,*t*)¹⁰Li reaction. At the energies we will use, even at quite forward angles the triton angular distribution can distinguish *l*=0 and 1 transitions and will help determine the locations of the *s*-wave and *p*wave strengths in ¹⁰Li.

⁸He Calibration: In past experiments it has proved extremely useful to have a good calibration reaction. We will characterize the performance of HiRA with the ⁹Li(d,³He/³H)⁸He/⁸Li reactions in inverse kinematics. ⁹Li is a prolific beam and as both ⁸He and ⁸Li ground states are bound the ⁹Li(d,³He/³H) reactions will provide a good calibration. Furthermore, although the ground-state transitions will be strongest, due to configuration mixing information about excited states in ⁸He may also be obtained from this reaction. There is also uncertainty about the spectrum of excited states in ⁸He, where recent data show rather different results. Figure 4 shows data from the ⁶He(t,p)⁸He reaction [12] which claims several narrow excited states, one of which is possibly 1⁺ even though direct transitions to unnatural parity states via (t,p) here are forbidden. The possibility of a 1⁻ state was also mentioned in [12], although both suggested observations remain controversial. For instance, very recent data from ⁸He breakup [21] (Fig. 4b) show a rather different picture, claiming two broad excitations but no narrow excited states. Data for the unbound states in ⁸He may help resolve some of these questions.

II. Goals of the proposed experiment

1. Observe the ${}^{11}\text{Li}(d, {}^{3}\text{He}){}^{10}\text{He}_{g.s.}$ reaction and study the properties of ${}^{10}\text{He}_{g.s.}$

2. Study the ¹⁰Li low-energy structure with the ¹¹Li(d,t)¹⁰Li reaction.

3. Calibrate HiRA with the ${}^{9}\text{Li}(d, {}^{3}\text{He}/{}^{3}\text{H}){}^{8}\text{He}/{}^{8}\text{Li}$ reactions and study nucleon-removal to states in ${}^{8}\text{He}$ and ${}^{8}\text{Li}$.

III. Experimental Details

The experiment will be performed using ^{9,11}Li secondary beams produced by fragmentation of an ¹⁸O primary beam at 120 MeV. Target and wedge thicknesses are provided in the attached

LISE++ files. The A1900 I2 slits will be set for $\delta p/p=2\%$, and the ¹¹Li energy will be 85 MeV/u. With these parameters, LISE++ predicts a ¹¹Li focal plane rate of 75 pps/pnA, corresponding to a total focal-plane rate of 1.2×10^4 pps. Assuming a transport efficiency of 80% to the S2 vault in accordance with prior experience, this corresponds to a rate of approximately 10^4 pps on target. The ${}^{3}\text{He}/{}^{3}\text{H}$ reaction products will be detected using HiRA, which will be installed in the large scattering chamber in the S2 vault (See Fig. 5) in the same position as for experiment E10011, and for the experiment proposed by the Washington University at St. Louis group on ¹¹O submitted to PAC38, although the target will be in the center of the chamber as indicated in Fig. 5. The method will be the same as used in the successful E10011: 3 He/ 3 H reaction products with low energies will be detected and identified using the ΔE and E silicon-detector layers of the HiRA telescopes. In E10011, the coincident detection of the high-energy recoiling decay products permitted the clean isolation of the reactions of interest (see Fig. 6). Here, the angles of the high-energy beam-like ⁸He/⁹Li recoils do not exceed 2.5 degrees, and these nuclei will not be observed in the normal HiRA telescopes. To detect these fragments, we will include an additional silicon-scintillator telescope at 0 degrees with scintillator thick enough to stop the high-energy ⁸He particles. This telescope will have only a single silicon layer, segmented so as to be able to accept the full expected incident beam of 10^4 pps. For the E scintillator, we will use either a segmented CsI(Tl) or plastic-scintillator detector to accommodate the full beam rate. For the ⁹Li calibration, the beam is much more intense (>10⁵ pps), but the beam-like recoils extend to larger laboratory angles. We will block the center-most part of the 0 degree detector and limit the beam intensity to 10^5 pps for the calibration run. Additional calibration data will be obtained from alpha-particle source measurements.

Our count rates for the ¹¹Li portion of the experiment are based on the following estimates: A ¹¹Li intensity of 10⁴ pps, a HiRA solid angle of 0.45 sr, and target thickness of 2.5mg/cm². This corresponds to a count rate of approximately 0.6 counts/hour/mb/sr; DWBA calculations predict cross sections of several mb/sr for unit spectroscopic factor. If the average cross section is as small as 1 mb/sr, we would still obtain a ground-state yield of approximately 100 counts in one week of running, which will be sufficient to characterize the energy and width of the state and provide information about the angular dependence of the cross section. We have performed Monte-Carlo simulations of the reactions to determine the HiRA acceptance and the effects of target thickness and beam-spot size. With this setup, HiRA will cover angles between 5 and 35 degrees in the laboratory. The expected beam-spot size of 5mm X 10mm and 2% momentum acceptance have little effect on the resolution. The energy loss of ³He in target will broaden and

shift the ¹⁰He ground-state peak, however the effects are straightforward to correct and we will still be able to extract determinations of energies and widths for populated states. We request 12 h for development of the 120 MeV ¹⁸O beam, 5h each for development and delivery to the S2 vault of the ^{9,11}Li beams, 24 h for debugging and setup of HiRA with ⁹Li, 24h for the ⁹Li calibration measurement, and 168h for the ¹¹Li measurement, for a total request of 238 hours.

IV. Supplemental Information (Figures, Tables, References, etc., including one

figure that depicts the layout of the experimental apparatus)

References:

- [1] Pieper and Wiringa
- [2] Whomever, NCSM
- [3] H. T. Fortune, Phys. Rev. C 88, 034328 (2013)
- [4] L. V. Grigorenko and M. V. Zhukov, Phys. Rev. C 77, 034611 (2008)
- [5] Z. Kohley et al., Phys. Rev. Lett. 109, 232501 (2012)
- [7] M. S. Golovkov et al., Phys. Rev. C 76, 021605 (2007)
- [16] L. Chen et al., Phys. Lett. B 505, 21 (2001) s-wave gs 9He
- [x] T. Al Kalanee et al., Phys. Rev. C 88, 034301 (2013) ganil 8He(dp)
- [8] H. T. Johansson *et al.*, Nucl. Phys. A **847**, 66 (2010)
- [9] A. A. Korsheninnikov et al., Phys. Lett. B 326, 31 (1994)
- [10] T. Kobayashi et al., Nucl. Phys. A **616**, 223c (1997).
- [11] A. N. Ostrowski et al., Phys. Lett. B 338, 13 (1994)
- [12] M. S. Golovkov et al., Phys. Lett. B 672, 22 (2009)
- [13] S. I. Sidorchuk et al., Phys. Rev. Lett. 108, 202502 (2012)
- [14] H. T. Johansson et al., Nucl. Phys. A 842, 15 (2010)
- [15] L. V. Chulkov et al., Phys. Lett. B **720**, 344 (2013)
- [16] Yu. Aksutina et al., Phys. Lett. B 666, 430 (2008).
- [17] B. A. Chernyshev et al., Eur. Phys. J. A 49, 68 (2013)
- [18] H. Simon et al., Nucl. Phys. A **791**, 267 (2007)
- [19] H. Jeppesen et al., Phys. Lett. B 642, 449 (2006)
- [20] H. G. Bohlen et al., Prog. in Part. and Nucl. Phys. 42, 17 (1999)
- [21] Xaio Jun et al., Chin. Phys. Lett. 29, 082501 (2012)

other references

- [22] Yu. Aksyutina et al., Phys. Lett. B 718, 1309 (2013)
- [6] A. S. Fomichev et al., Eur. Phys. J. A 42, 465 (2009)
- [11] L. V. Grigorenko et al., Phys. of Part. and Nucl. Lett. 6, 118 (2009)
- [12] K. Hagino, N. Takahashi, and H. Sagawa, Phys. Rev. C 77, 054317 (2008)

Table 1. Different values of the energy and width of the ¹⁰He ground state. Table reproduced from Reference [3].

Reaction	E_{2n} (MeV)	Γ (MeV)	Ref.
$^{1}\text{H}(^{11}\text{Li},2p)$	1.7(3)(3)		10
² H(¹¹ Li, ³ He)	1.2(3)	<1.2	9
$^{10}\text{Be}(^{14}\text{C},^{14}\text{O})$	1.07(7)	0.3(2)	11
$^{14}\text{B-}2p2n$	1.60(25)	1.8(4)	5
³ H(⁸ He, <i>p</i>)	2.1(3)	~2	13
³ H(⁸ He, <i>p</i>)	~3		12
¹¹ Li- <i>p</i> knockout	1.42(10)/1.54(11)	1.11(76)/1.91(41)	14

Table 2. Resonance parameters for states in ¹⁰Li, reproduced from Reference [17]. ^aScattering length for a virtual s-wave ground-state, ^bExcited-state resonance parameters

Reaction	E _n	Γ (MeV)	Ref.
¹¹ Li- <i>n</i> knockout	-22.4±4.8 ^a	0.352±0.022	16
¹¹ Li- <i>n</i> knockout	~30ª	0.3	18
⁹ Li(<i>d</i> , <i>p</i>) ¹⁰ Li	-24 <a<-13ª< td=""><td></td><td>19</td></a<-13ª<>		19
⁹ Li(<i>d</i> , <i>p</i>) ¹⁰ Li ^b	~0.4	~0.2	19
¹¹ Li- <i>n</i> knockout ^b	0.566±0.014		16
¹¹ Li- <i>n</i> knockout ^b	0.510±0.044		18
¹⁴ C(π-, <i>pt</i>) ^b	0.70±0.05	<0.2	17
$^{14}{ m C}(\pi, dd)^{ m b}$	0.78±0.15	~0.5	17
^{9,10} Be(^{12,13} C, ^{12,13} N) ^b	2.35±0.10		20
¹¹ Li- <i>n</i> knockout ^b	~5.2		10
$^{15}C(\pi, dd)^{b}$	6.12±0.09		17

Figure 1. ¹⁰He excitation spectra deduced from: (a) ⁸He-2*n* events from ¹¹Li+CD₂ interactions from [9] (open symbols) and [8] filled symbols. (b) ⁸He-2*n* events from ¹⁴Be-2*p*2*n* knockout [5], ⁸He(*t*,*p*)¹⁰He from (c) Ref. [12] and (d) Ref [13].

Figure 2. ¹⁰Li spectra from (a) ¹¹Li-n knockout (Ref. [16]) and (b) a recent report of pion absorption (Ref. [17]).

Figure 3. ⁸He spectra from (a) the ${}^{6}\text{He}(t,p){}^{8}\text{He}$ reaction (Ref. [12]) and (b) ${}^{6}\text{He}-2n$ correlations following ${}^{8}\text{He}$ breakup (Ref. [21]).

Figure 4. Experimental setup showing HiRA in the S2-vault large scattering chamber.

Figure 5. Monte-Carlo simulations of the ¹¹Li(*d*,³He)¹⁰He reaction in inverse kinematics measure with HiRA. (a) ³He energy-angle correlation. (b) ¹⁰He missing-mass spectra with source spectrum (thin histogram) and reconstructed expected ¹⁰He signal for a 1mb/sr average cross section (thick histogram).

Figure 6. Results from the recent study (E10011) of the ⁶He(d,³He/³H)⁵H/⁵He reactions using HiRA. (a,b) ³He and ³H kinetic-energy spectra obtained in coincidence with ³H/⁴He from the decay of ⁵H/⁵He; (c,d) ⁵H and ⁵He missing-mass spectra. The dashed histogram in Fig. 1c illustrates the resolution from that measurement.

Status of Previous Experiments

Results from, or status of analysis of, previous experiments at the CCF listed by experiment number. Please indicate publications, invited talks, Ph.D.s awarded, Master's degrees awarded, undergraduate theses completed.

E10011: The first analysis of the results from E10011, run in August 2013, is complete, and a manuscript describing the results has been submitted to Physical Review Letters. (See figure 6).

Educational Impact of Proposed Experiment

If the experiment will be part of a thesis project, please include the total number of years the student has been in graduate school, what other experiments the student has participated in at the NSCL and elsewhere (explicitly identify the experiments done as part of thesis work), and what part the proposed measurement plays in the complete thesis project.